شاخهای از ریاضیات کاربردی است که در علوم اجتماعی و به ویژه در اقتصاد، زیستشناسی، مهندسی، علوم سیاسی، روابط بینالملل، علوم کامپیوتر، بازاریابی و فلسفه مورد استفاده قرار گرفته است. نظریه بازی در تلاش است توسط ریاضیات رفتار را در شرایط راهبردی یا بازی، که در آنها موفقیت فرد در انتخاب کردن وابسته به انتخاب دیگران میباشد، بدست آورد.
یک بازی شامل مجموعهای از بازیکنان، مجموعهای از حرکتها یا راهبردها (Strategies) و نتیجهٔ مشخصی برای هر ترکیب از راهبردها میباشد. پیروزی در هر بازی تنها تابع یاری شانس نیست بلکه اصول و قوانین ویژهٔ خود را دارد و هر بازیکن در طی بازی سعی میکند با به کارگیری آن اصول خود را به برد نزدیک کند. رقابت دو کشور برای دستیابی به انرژی هستهای، سازوکار حاکم بر روابط بین دو کشور در حل یک مناقشهٔ بینالمللی، رقابت دو شرکت تجاری در بازار بورس کالا نمونههایی از بازیها هستند.
نظریهٔ بازی تلاش میکند تا رفتار ریاضی حاکم بر یک موقعیت استراتژیک (تضاد منافع) را مدلسازی کند. این موقعیت زمانی پدید میآید که موفقیت یک فرد وابسته به راهبردهایی است که دیگران انتخاب میکنند. هدف نهایی این دانش یافتن راهبرد بهینه برای بازیکنان است.
بازی
هرگاه سود یک موجودیت تنها در گرو رفتار خود او نبوده و متاثر از رفتار یک یا چند موجودیت دیگر باشد، و تصمیمات دیگر تاثیر مثبت و منفی بر روی سود او داشته باشند، یک بازی میان دو یا چند موجودیت یاد شده شکل گرفته است.
رفتار بخردانه یا عقلایی (به انگلیسی: Rational Behavior)
اصل اصیل نظریه بازی ها بر بخردانه بودن رفتار بازکنان است. بخردانه بودن به این معنا است که هر بازیکن تنها در پی بیشینه کردن سود خود بوده و هر بازیکن می داند که چگونه می تواند سود خود را بشینه کند. بنابر این حدس زدن رفتار ایشان که بر اساس نمودار هزینه-فایده است آسان خواهد بود. مانند بازی شطرنج که میتوان حدس زد که حریف بازی بلد و با تجربه چه تصمیمی خواهد گرفت.
استراتژی
استراتژی مهارت خوب بازی کردن و یا محاسبه ی بکارگیری مهارت به بهترین وجه است.
تفکر استراتژیک
فکر کردن به بازی حریف و تصمیمات و او و واکنش های احتمالی را تفکر استراتژیک می گویند.
ساختار بازی
هر بازی از سه عنصر اساسی تشکلی شده است: بازیکن ها، اعمال، ترجیحات
بازیکن ها
بازیکن ها در اصل همان تصمیم گیرندگان بازی می باشند. بازیکن می تواند شخص، شرکت، دولت و ... باشد.
عمل
مجموعه ای است از تصمیمات و اقداماتی است که هر بازیکن می تواند انجام دهد.
نمایه عمل
هر زیر مجموعه ای از مجموعه ی اعمال ممکن را یک نمایه عمل گوییم.
ترجیحات
ترجیحات یک بازیکن در اصل مشوق های بازیکن برای گرفتن یا نگرفتن تصمیمی می باشد به عبارت دیگر بیان گر نتیجه و سطح مطلوبیت بازیکن در صورت گرفتن تصمیم متناظر با آن می باشد.
انواع بازی
نظریه بازی علیالاصول میتواند روند و نتیجهٔ هر نوع بازی از دوز گرفته تا بازی در بازار بورس سهام را توصیف و پیشبینی کند.
تعدادی از ویژگیهایی که بازیهای مختلف بر اساس آنها طبقهبندی میشوند، در زیر آمدهاست. اگر کمی دقت کنید از این پس میتوانید خودتان بازیهای مختلف و یا حتا پدیدهها ورویدادهای مختلفی را که در پیرامون خود با آنها مواجه میشوید به همین ترتیب تقسیمبندی کنید.
متقارن - نامتقارن (Symmetric - Asymmetric)
بازی متقارن بازیای است که نتیجه و سود حاصل از یک راه برد تنها به این وابسته است که چه راهبردهای دیگری در بازی پیش گرفته شود؛ و از این که کدام بازیکن این راهبرد را در پیش گرفتهاست مستقل است. به عبارت دیگر اگر مشخصات بازیکنان بدون تغییر در سود حاصل از به کارگیری راهبردها بتواند تغییر کند، این بازی متقارن است. بسیاری از بازیهایی که در یک جدول ۲*۲ قابل نمایش هستند، اصولاً متقارناند.
بازی ترسوها و معمای زندانی (در ادامه توضیح داده خواهد شد.) نمونههایی از بازی متقارن هستند.
بازیهای نامتقارن اغلب بازیهایی هستند که مجموعهٔ راهبردهای یکسانی برای بازیکنان در بازی وجود ندارد. البته ممکن است راهبردهای یکسانی برای بازیکنان موجود باشد ولی آن بازی نامتقارن باشد.
مجموع صفر - مجموع غیر صفر(Zero Sum - Nonzero Sum)
بازیهای مجموع صفر بازیهایی هستند که ارزش بازی در طی بازی ثابت میماند و کاهش یا افزایش پیدا نمیکند. در این بازیها، سود یک بازیکن با زیان بازیکن دیگر همراه است. به عبارت سادهتر یک بازی مجموع صفر یک بازی برد-باخت مانند دوز است و به ازای هر برنده همواره یک بازنده وجود دارد.
اما در بازیهای مجموع غیر صفر راهبردهایی موجود است که برای همهٔ بازیکنان سودمند است.
تصادفی - غیر تصادفی (Random - Nonrandom)
بازیهای تصادفی شامل عناصر تصادفی مانند ریختن تاس یا توزیع ورق هستند و بازیهای غیر تصادفی بازیهایی هستند که دارای راهبردهایی صرفاً منطقی هستند. در این مورد میتوان شطرنج و دوز را مثال زد.
با آگاهی کامل – بدون آگاهی کامل (Perfect Knowledge – Non-Perfect Knowledge)
بازیهای با آگاهی کامل، بازیهایی هستند که تمام بازیکنان میتوانند در هر لحظه تمام ترکیب بازی را در مقابل خود مشاهده کنند، مانند شطرنج. از سوی دیگر در بازیهای بدون آگاهی کامل ظاهر و ترکیب کل بازی برای بازیکنان پوشیدهاست، مانند بازیهایی که با ورق انجام میشود.
مفاهیم نظریه بازی ها
تعادل
در یک سیستم اقتصادی تعادل به نقطه ای گفته می شود که در آن هیچ یک از طرفین معامله تمایل به تغییر نداشته باشند و با هر گونه تغییر شرایط بدتر شده و سیستم مجدداً به نقطه ی تعادل باز می گردد
تعادل نش
یک نمایه عمل بازی می باشد که با فرض ثابت بودن بازی سایر بازیکنان، هر بازیکن با تغییر بازی خود شرایطش بدتر شود. یا به عبارت دیگر، نمایه عملی است که با فرض ثابت بودن بازی سایر بازیکنان هیچ بازیکنی انگیزه ی تغییر بازی خود را نداشته باشد.
تعادل بیزین نش
نمونههایی از بازیها
بازی ترسوها (Chicken Game)
دو نوجوان در اتومبیلهایشان با سرعت به طرف یکدیگر میرانند، بازنده کسی است که اوّل فرمان اتومبیلش را بچرخاند و از جاده منحرف شود.
بنابراین:
اگر یکی بترسد و منحرف شود دیگری میبرد؛
اگر هر دو منحرف شوند هیچکس نمیبرد اما هر دو باقی میمانند؛
اگر هیچکدام منحرف نشوند هر دو ماشینهایشان ( و یا حتی احتمالاً زندگیشان را) میبازند؛
بنا بر این به احتمال زیاد یا هر دو تصادف کرده یا مساوی می شوند و احتمال برد یکی خیلی کم است.
معمای زندانی(Prisoner’s dilemma)
نوشتار اصلی: معمای زندانیها
دو نفر متهم به شرکت در یک سرقت مسلحانه، در جریان یک درگیری دستگیر شدهاند و هر دو جداگانه مورد بازجویی قرار میگیرند. در طی این بازجویی با هریک از آنها جداگانه به این صورت معامله میشود:
اگر دوستت را لو بدهی تو آزاد میشوی ولی او به پنج سال حبس محکوم خواهد شد.
اگر هر دو یکدیگر را لو بدهید، هر دو به سه سال حبس محکوم خواهید شد.
اگر هیچکدام همدیگر را لو ندهید، هر دو یکسال در یک مرکز بازپروری خدمت خواهید کرد.
در این بازی به نفع هر دو زندانی است که هر دو گزینه سوم را انتخاب کنند، ولی چون هر کدام از آنها به دنبال کسب بهترین نتیجه برای خود یعنی آزاد شدن است و به طرف مقابل نیز اعتماد ندارد دوست خود را لو میدهد و در نتیجه هر دوی زندانیها متضرر میشوند.